1994 Shannon Lecture
Typical Sequences and All That:

Entropy, Pattern Matching, and Data Compression

Aaron D. Wyner

AT&T Bell Laboratories
Murray Hill, New Jersey 07974
USA
(adw@research.att.com)

I. Introduction

This will be a talk about how pattern matching relates to
certain problems in information theory. Here is a typical
pattern matching problem.

A monkey sits at a typewriter and every second
types a single Latin letter. Assume that all 26
letters are equally likely, and successive letters
are independent. How long on the average will
it take the monkey to type “CLAUDESHAN-
NON”?

The answer is that the average waiting time (in seconds)

1S
13 13 log, 26 (H
26 2 g2 2 ,

where

¢ = 13 = number of letters in

“CLAUDESHANNON”

H = log 26 = entropy of the monkey’s data sequence.

(A1l logarithms are taken to the base two.) We will show
that entropy and pattern matching are closely connected
by looking at three problems:

A. Observe the output of a data source, X1, X9, X3,.. .,
and estimate the entropy of the source.

B. Encode a data source {X}} into binary symbols us-
ing about H bits/source symbol (optimal lossless
data-compression).

C. Observe Ny symbols from an unknown data source
{X}, and decide whether or not the source statis-
tics are the same as those of a given known source
(classification).

In the next section we will give some preliminary defi-
nitions and facts, and then discuss these problems in the
following three sections.

II. Preliminaries

We need a bit of notation. An information or data source
is a random sequence {Xj}, —oo < k < co. We assume
that the sequence is stationary and ergodic, and X, takes
values in the finite set A, with cardinality |A| = A. The
probability law defining the data source is given by

Pk (x{() £ Pr{X{(= x{(} ,

K=1,2.., (21)

where we use the notation xf = (4 Tig1s--.,25),

i < j. When sub- and super-scripts are obvious from
the context, they will be omitted.
The entropy of the data source is

(1>

. 1 . |

1

e (X (2.2)

) 1
= g Ples
The indicated limit always exists. It is easy to show
that H < log A, with equality iff the {X}} are i.i.d. and
equally probable.

The theorem (due to Shannon and McMillan) that lies
at the heart of much of information theory is the “Asymp-
totic Equipartition Property” or “AEP”. We state it as
follows. For € > 0, and £ =1,2,..., let the set

1
Py(x)

T, ¢) = {xeAf:‘%log —H‘ ge}. (2.3)

Thus if x € T(¢,€), Py(x) = 27¢H*) The AEP is a
theorem which states that with ¢ > 0 held fixed, as /£
becomes large, the probability of T'(¢,€) approaches 1.
That is,

Theorem 2.1 (AEP) For fized € > 0,
lim Pr(T(¢,¢)) = 1.
£—00

Since with probability close to 1, the random vector X¢ €
T (¢, €) (£ large), the set T'(¢,¢) is called the “typical set”.
A proof of the AEP can be found in many textbooks and
elsewhere. See for example [3]. An important property
of T'(£,¢€) is that it is not too large:

Proposition 2.2. |T(£,¢)| < 200+,

Proof:

1> Pr(T(te) =Y Pix)>2 FTTIT(0,¢)).
xeT

The second inequality follows from the definition of
T (4, €) (2.3).

Let us remark that there is a stronger version of the
AEP called the Shannon-McMillan-Breiman Theorem.
(See for example [1].) We state this as

Theorem 2.1'. For a stationary, ergodic source, with
probability 1, as — oo,
1

1
Elog7—>H

Py(XY)

We next turn to pattern matching and give some defi-
nitions and theorems that we will need later.

Definition 2.3. For x = x*_, and £ = 1,2,..., define

o0

Ny(x) as the smallest integer N > 1 such that x| =
"N+

X N+ttt

Ny(x) is a (backward) “recurrence time” for x{. As an

example suppose that {z;} is as follows
k: -5 -4 -3 -2 -1 0|1 2 3 4 5

rp,: a b b ¢ a b|b b c a c

Let £ = 4, and think of x{ = x{ as a template. Slide
the template to the left until we see a perfect match. In
the example, x{ = (b b ¢ a), and we get the first perfect
match 5 places to left (since x} = x_}). Thus Ny(x) = 5.
Note also that Ny = N, =1, N3 =5 and N5 > 6.

We now state a theorem about Ny(x), which is a special
case of a theorem of Kac [4]. A proof is given in the

Appendix.

Theorem 2.4 (Kac) For all z € A,
E (N(X) | X{ =2) =1/Py(2). (2.4)

A plausibility argument for Theorem 2.4 goes as fol-
lows. Fix z. Define the random variables

o xe—itl—1 _
W, = 1, if X7 = zZ
0, otherwise.

Of course, EW; = Py(z). Then it is reasonable to write

time for z

{ Average (backward) recurrence }

occurrences of z

_ { Average time between }

K
= lim = lim
K—oo0 { no. of occurrences } K—00 1(21 .
1 g
of z in X"7 part
W 11
EW; Py(z)

Step (a) follows from the ergodic theorem. The plausibil-
ity argument is completed by observing that reasonably
{Average recurrence time for z} = F (Ng | X¢ = z).
Using Theorem 2.4 and the AEP (which tells us that
the right-member of (2.4) is about 2¢7) we can obtain

Theorem 2.5 (Wyner and Ziv) As/ —

1

7 log(Ny(X) - H (in probability)

Actually the convergence is with probability 1, and a

proof of this stronger form is contained in the Appendix.
We next define another quantity which is closely re-

lated to N (x).

Definition 2.6. For x = x>, and n = 1,2, ..., define
L, (x) as the largest integer L > 1 such that a copy of x

begins in [—n 4 1,0]. (Think of X°,; as a “window”.)
As an example, suppose that {z;} is as before:

k: -5 -4 -3 -2 -1 01 2 3 4 5

r,: a b b ¢ a b|b b ¢ a c

Let n = 5. Then (b b c a) = x{ is the longest string start-
ing at position 1, a copy of which begins in the window
x", = (bbcab). (Note that a copy of x} = (bbca c)
does not begin in x° ;.) Thus Ls(x) = 4.

Ny and L, are in a sense dual quantities since the
events

a copy of X¢ does not
{N(X) >n} = { By }

begin in [—n + 1,0]
= {L,(X) < ‘}. (2.5)

Thus Theorem 2.5 implies that L, (X) — %" (in prob-
ability). Collecting the above results, we have

Theorem 2.7. (a) As { — oo,

1
7 log Ny(X) - H (in probability),
(b) Asn — oo,
1
L,(X) — Ofgln (in probability).

III. Entropy Estimation (Problem A)

We first show how the pattern matching ideas in Sec-
tion IT can be used to obtain an efficient “sliding window”
entropy estimation technique (Problem A in Section I).
Observe { X7, Xo,...}. Initially, let X7 define a “win-
dow”, and let L™) be the largest integer L such that

XTL-I—L

_ m+L—1
n+l — Xm ’

for some m € [1,n).
Thus LY is the length of the longest string starting at
Xn+1 a copy of which begins in the window X7. Of
course, L1 has the same statistics as L, (Def. 2.6).
Next shift the window 1 position, so that the new win-
dow is X’;H, and define L) in the same way. Repeat
this process to get L*), k=1,2,3,....
Now if the source has finite memory, it can be shown
[9, 10] that, as n — oo,

BL, ~ logn

(3.1)

(Note that Eq. (3.1) is close to, but not the same as The-
orem 2.7(b).). Thus, it follows from the ergodic theorem
that

1 & logn
e S LW S EL, ~ — (3.2)
k=1
and a good estimate for the entropy is
~ , Kl
7 it 2 (3.3)

for some large K. Even if the source does not satisfy
(3.1), Theorem 2.7(b) can be used to obtain an estimate
of H from the {L(k)}.

The technique was used very effectively in [2],
where the entropy of the information bearing and non-
information bearing parts (“exons” and “introns”, re-
spectively) were estimated and compared.

IV. Data-Compression (Problem B)

The AEP immediately suggests a data-compression
scheme. Theorem 2.1 and Proposition 2.2 together im-
ply that, when / is large, the set T'(Z, €) has no more than
2t(H+¢) members and has probability nearly 1. Thus, as-
suming that the source statistics are known, the system
designer can index the members of T'(4, €), using no more
than £(H + €) bits.

The scheme is as follows. If X{ € T'(4,¢), then encode
X{ as its index in T'(¢,¢). This requires* < £(H + ¢)
bits. If X4 does not belong to T(/, €), then encode X!
uncompressed. This requires < /log A bits. Including a
1-bit flag to distinguish the two modes, we have described
a (“fixed-to-variable-length”) lossless code with rate

1
E- {no. of bits to encode Xf}

V4
< P(t.0) 1) L preg, e o184
1
+Z—>H+e, as £ — oo.

Thus the source is encoded into binary symbols using
about H bits/source symbol, and this rate is known to
be optimal. But what can be done if the source statistics
are unknown to the system designer?

The Lempel-Ziv data-compression algorithms provide
a universal compression technique for coding a data
source into binary using about H bits/source sym-
bol without knowledge of the source statistics. Their
technique is intimately connected to pattern match-
ing. We’ll describe the “sliding-window Lempel-Ziv al-
gorithm” (also called “LZ ’777).

Here is how the algorithm works. Let n be an integer
parameter. Assume that the n-string X%, ., is avail-
able to both the encoder and decoder — say by encoding
XU_,H_I with no compression. We will encode X1, Xo, ...,
so that the cost of encoding X°,, ., is “overhead” which
can be amortized over an essentially infinite time, and
this cost doesn’t contribute to the rate. Think of X°,
as our first “window”.

*We ignore integer constraints.

We now begin the encoding process. Let L, be as in
Section II, the largest integer L > 1, such that
Xl = xmt+i=1 m € [-n+1,0].
The quantity m is called the “offset” corresponding to
the “phrase” XIL" This first phrase is encoded by

(a) a binary representation of L,. This requires about
log L, + O(loglogn) (for large n, see [8]).

(b) abinary representation of the offset m. This requires
logn bits.

If L, =0 (ie. X1 # X_m, m € [—n+1,0]) we let the
first phrase be X7, and encode it uncompressed. Also
if a phrase is so short that number of bits to encode it
((a)+(b) above) exceeds Ly, [log A], we encode the phrase
uncompressed. We also need a flag bit to distinguish
these two modes. Note that from Theorem 2.7(b), L,, ~
105” with high probability, so that the latter mode is very
unlikely.

With the encoding done, the window is now shifted L,
positions to become XE?H-H-L”’ and the encoding pro-
cedure is repeated to form and encode a second phrase
beginning with X, 11 using this new window. The pro-
cess is continued indefinitely.

Now let’s look at the decoding procedure. The decoder
knows the first window, XO_,H_l, the offset m, and the
length of the first phrase L,. It can reconstruct this first
phrase by starting at X, (in the window) and moving

ahead L,, positions. For example, if n = 5 and

(X_4,X 3,---)=(abcde:deda--),

then L, = 3 and m = —1. (This is because X3 = X!).
With knowledge of the window, X%, = (a b ¢ d e), the
decoder copies “d” and “e” to positions 1 and 2, respec-
tively, and then copies the “d” in position 1 to position 3:
Thus the decoder can recover the first phrase X3. Suc-
cessive phrases are decoded in the same way.

We can now give an estimate of the rate of this algo-
rithm. Since, with high probability, the phrase length
will be long enough to use the first encoding mode,

no. of bits to encode phrase

&

code rate
g length of a phrase

logn + log Ly, + O(loglog Ly,)
L, '

Q

Since, from Theorem 2.7(b), L, ~ 1%%—", with high prob-
ability when n is large, the code rate is about H.

The above analysis is not at all precise. For a careful
discussion of the Sliding-Window Lempel-Ziv algorithm,
the reader is referred to [8]. In particular the following
is proved there.

Theorem 4.1. When the sliding-window Lempel-Ziv al-
gorithm is applied to a stationary ergodic source, for all
e > 0, there exists a window size n (sufficiently large)
such that

) 1
lim sup —
K—o0

et EL ST

An interesting question is how large does the window
size n have to be so that (4.1) will hold for a given € > 07
The answer of course is that it depends on the source
statistics. Thus, although the specification of the algo-
rithm does not depend of the source statistics explicitly,
the choice of the proper window size does. In practice, a
window size is chosen, and the algorithm is used on a va-
riety of sources — for some sources the compression rate
is close to the entropy, for others it may not be. It seems
obvious that any so-called “universal algorithm” with a
given memory size cannot perform well for all sources.

Concerning the main thrust of this talk, we observe
that the window in the Lempel-Ziv algorithm plays the
role of the typical set T'(¢, €) in the classical compression
scheme.

Some historical comments: The sliding-window LZ al-
gorithm (LZ ’77) was published in 1977 by A. Lempel
and J. Ziv [11]. They published another less powerful
but easier to implement version in 1978 [12]. In 1977
they established the optimality of LZ ’77 in a combina-
torial, non-probabilistic sense. True optimality was es-
tablished for LZ 78 in [12]. (Also see [1, Section 12.10].)
Finally, optimality of LZ ’77 (Theorem 4.1) was estab-
lished by Wyner and Ziv in [8]. Sliding-window LZ is
the basis for the UNIX “gzip”, and for the “Stacker” and
“Doublespace” programs for personal computers.

V. Classification (Problem C)

Here is the sort of problem that we will address in this
section.

We are allowed to observe Ny characters from
the corpus of work of a newly discovered 16"
century author. We want to determine if this
unknown author is Shakespeare. And we want
to do it with minimum Ng.

A mathematical version of the problem is depicted in Fig-
ure 1. This classifier observes Ny symbols from a station-
ary data source X]° (“newly discovered author”) with
probability law P(-) and alphabet A. It also knows a
second distribution on f-vectors, Q(z), z € A’ (“Shake-
speare”). Its task is to decide whether or not Py(z)
(z € AY), the /-th order marginal distribution corre-
sponding to P(-), is the same as Q)y. Specifically, the
classifier must produce a function f,. (X{VO,QK) which,
with high probability, equals 0 when P, = @y, and 1
when the Kullback-Liebler divergence D;(Qg; P;) > A,
where

D(Qe: Pr) é (5.1)

5> Qule ())
ZG.AZ

and A is a fixed parameter. Recall that Dy(Qy, Py) > 0,
with equality iff Q; = Py, and is a measure of “different-
ness”. If 0 < Dy(Q, P;) < A, then nothing is expected
of the classifier. The problem is to design a classifier as
above with minimum possible Nj.

In [6], it is shown that for a finite-memory (Markov)
when £ is large, the minimum Ny is about
, where H is the source entropy. The intuition
for this is the following. The classifier knows Q(z),
z € Af, and therefore it knows the corresponding typ-
ical set T'(¢,€). It turns out that for Ny > 2((F+€) the
sequence X0 will (with ¢ large and with high proba-
bility) contain the typical set corresponding the Pp(-) as
subsequences. If these sets agree substantially, then the
classifier declares that (), = P,. Otherwise, it declares
De(Qg; Pp) > A.

More precisely, for z € A’ and x € AN, let N(z,x)
be the smallest integer N € [1, N — ¢ + 1] such that a
copy of z is a substring of x, i.e. z = x%"’e_l. If z is not
a substring of x, then take N(z,x) = Ny + 1. Now the
following can be shown to hold: For fixed z, when /£ is
large and Ny = 2(H+e)L,

source,
9lH+o(f)

(a) Pr{]\A/' (z,X{vO) SNg}z
< e} ~ 1.

1
o eefy h

Based on (5.2), the classifier might work as follows. For
each z € A’ it computes N (z, X{VU), and lets

logN (z XNO) — log

1
Py(z)

Py(z) = 1/N (2, X]") (5.3)

be an estimate of Py(z). It then plugs this estimate into
the equation for Dy, to obtain

Dy(Qe, Pp) =
ze Al E(Z

(5.4)

Finally, it then sets f,. (X{V, Q) =1 or 0 according as D
exceeds a threshold.

It turns out that this technique works, but with the
following modification. Break the sequence X{VU into K
subsequences, where K is a constant that doesn’t grow
with £. Then if Ny ~ 2%, the length of each of the K
substrings, Ny/K, has the same exponent as Ny. Then
replace (5.3) by

~ 1

Pi(z) = S kN
o/K ?
@%XK N (Z’ X(kfl)No/KH)

(5.3

and use (5.4) to compute the estimate D. Complete de-
tails are given in [6].

Thus we see again how the typical set T'(Z, €) is roughly
the same as the collection of substrings of length ¢ of
(X1, Xo,...,Xn,) where Ny ~ 20 +€),

Acknowledgement

I would like to express my thanks to the Information
Theory Society for selecting me to present this Shannon
Lecture. Receiving an award from the group that has
been my intellectual home for over 30 years is especially
gratifying. I owe a great deal to countless other workers
in information theory, but I would like to make special
mention of several to whom I am especially indebted.

David Slepian hired me into Bell Labs, and put me
on my feet as a researcher. I also would like to publicly
thank the following friends and colleagues, from whose
help I benefited enormously: Jim Mazo, Larry Ozarow,
Larry Shepp, Hans Witsenhausen, and Jack Wolf. Fi-
nally, to my long-time friend and collaborator Jacob Ziv,
I extend an especially warm and grateful thank you.
Without the help of these people, and many others in the
information theory community and at Bell Labs, there is
no doubt that I would not be presenting this lecture.

References

[1] Cover, T. and J. Thomas, Elements of Information
Theory, Wiley, New York, 1991.

[2] Farach, M., M. Noordeweir, S. Savari, L. Shepp,
A.J. Wyner, J. Ziv, “On the Entropy of DNA: Al-
gorithms and Measurements based on Memory and
Rapid Convergence”, Proceedings of the 1995 Sym-
posium on Discrete Algorithms.

[3] Gallager, R.G., Information Theory and Reliable
Communication, Wiley, New York, 1968 (Theorem
3.5.3).

[4] Kac, M., “On the notion of Recurrence in Discrete
Stochastic Processes”, Bull. of the Amer. Math.
Soc., Vol. 53, 1947, pp. 1002-10010.

[5] Orenstein, D.S. and B. Weiss, “Entropy and Data
Compression Schemes”, IEEE Transactions on In-
formation Theory, Vol. 39, Jan. 1993, pp. 78-83.

[6] Wyner, Aaron D. and Jacob Ziv, “Classification
with Finite Memory”, to appear in the IEEE Trans-
actions on Information Theory.

[7] Wyner, Aaron D. and Jacob Ziv, “Some Asymptotic
Properties of the Entropy of a Stationary Ergodic
Data Source with Applications to Data Compres-
sion”, IEEE Transactions on Information Theory,
Vol. 35, Nov. 1989, pp 1250-1258.

[8] Wyner, Aaron D. and Jacob Ziv, “The Sliding-
Window Lempel-Ziv Algorithm is Asymptotically
Optimal”, Proceedings of the IEEE, Vol. 82, June
1994, pp. 872-877.

[9] Wyner, Abraham J., “The Redundancy and Distri-
bution of the Phrase Lengths of the Fixed-Database
Lempel-Ziv Algorithm”, submitted to the IEEE
Transactions on Information Theory.

[10] Wyner, Abraham, J. “String Matching Theorems
and Applications to Data Compression and Statis-
tics”, Ph.D. Thesis, Statistics Dept., Stanford Uni-
versity, June, 1993.

[11] Ziv, J. and A. Lempel, “A Universal Algorithm for
Sequential Data Compression”, IEEE Transactions
on Information Theory, Vol. 23, May 1977, pp. 337-
343.

[12] Ziv, J. and A. Lempel, “Compression of Individual
Sequences by Variable Rate Coding”, IEEE Trans-
actions on Information Theory, Vol. 24, Sept. 1978,
pp- 530-536.

Appendix

In this appendix we will give precise proofs of Theorem 2.4 and
Theorem 2.5. We begin with

Proof of Theorem 2.4: For a given z € A’, define the binary
random sequence {Y;}%,, by

1, if Xitt=g
V249 i+l Al
{ 0, otherwise. (A1)
Then
Pr{N(X)=k| X} =z}
= Pr{V. =1 Y_;=0 for 1<j<k|Yo=1}
2 Qk). (A2)
Write
12N S Py =1Y, =0for—k<j<iYi=1}
=0

Mo 1M
NE

Pr{Vi =1}

x~
Il

1 i=0

Pr{Y_,=1Y,=0for—k<j<i|Yi=1}

oo

Y P (=130 3000+

k=1

—~
o

Pr{Yo =1} kQ(k)

k=1

= Pr{Xi=z} E(N(X)|Xi=12). (A.3)

Step (a) follows from the ergodicity of {X;}, which implies that
with probability 1, Y,, = 1 for at least one n < 0 and one n > 0.
Step (b) follows from the stationarity of {X;}. Step (c) follows
from the fact that Q(k) appears in the left member of (c) exactly k
times — for (¢,5) = (0,k),(1,k—1),...,(k—1,1). Step (d) follows
from (A.1) and (A.2). Eq. (A.3) is Theorem 2.5.

Before proving Theorem 2.7, we will give several lemmas. Let
{€:}2, be a sequence of events in a probability space. Define the

events -
Eciol 2 () U &n (A 4a)
k=1 n>k
and -
Eeaal 2] () & (A.4D)
k=1 n>k

[€¢ i.0.] is the event that & occurs infinitely often, and [£; a.a.] is
the event that all but a finite number of the {&;} occur. (“a.a.”
stands for “almost always”.) The following is easy to prove.

Lemma A.1. Let {C;} and {&} be sequences of events. If
P& a.a] =1 then P[C; i.0.] < P[Ci&; i.0.].

Next we observe that the strong form of the AEP (Theorem 2.1')
states that with probability 1,

%logP[(Xf) — H, as {— co. (A.5)

Further a conditional form of the AEP states that with probability
1, as { — oo,

_T} log P (X1 | X2) = H. (A.6)
(A.6) follows from the ergodic theorem on writing
—1 ~1
— log P (X1 | XLo) = — Z;logP (xi | X2,)
¥ E-logP(Xi|X%,) =H (as) (A.7)
Fore>0,and £ =1,2,..., let
B, = { : elog &Z) —H‘ < 5/2} (A.8)
be the typical set defined in (2.3). jFrom Proposition 2.2
|Be| < 2"H+/2), (A.9)
Also define a conditional version of By, for e >0, £=1,2,...,
B, £ {x[_oo Nlog——1t < 6/2} . (A10)
€7 P(XT[X2,)
Note that (A.6) and (A.7) imply that
P[B; a.a.] = P[B; a.a] = 1. (A.11)

We are now ready to begin the proof of Theorem 2.5. Define the
events, for e >0, (=1,2,...,

1
A2 {Zlog Ne(X)>H + e} , (A.12a)
1
AL {ZlogNg(X) SH—e}. (A.12D)
Theorem 2.5 follows from the following lemmas.
Lemma A.2. P[A; i.0] =0.
Lemma A.3. P[4} i.0]=0.
These lemmas imply that with probability 1,
%log N¢(X) - H, as {— o0, (A.13)
which is the stronger form of Theorem 2.5.
Proof of Lemma A.2: Write
P(AB) =Y Pu(z)Pr{4,|X| =2}
zE By
= > Pa)Pr{N(X) > 2" | X| =2}
z€EBy
(a)
S Z PZ) | Xl _ Z) 27[(H+E)
zEBy
(b) _ _ (c)
2 22 Z(H+e):2 Z(H+E)|B[| <2 36/2. (A14)

z€EBy

Step (a) follows from the Markov inequality’ step (b) from Theo-
rem 2.4, and step (c) from (A.9). ;From (A.12))", P(A/B) < oo,
so that the Borel-Cantelli Lemma implies P[4;B; i.0.] = 0. Thus
(A.11) and Lemma A.1 (with Cy = A, & = By) imply Lemma A.2.

"Pr{|U| > a} < E|U|/a, for a > 0.

Proof of Lemma A.3: First observe that N;(x)is a function
of x* ., so that from now we write N; = Ny(x). We condition

on X% =x° . Define the section of A}.
y x(loo) = {xf ixto € A'[} , (A.15a)
and
= {xf xt € Bz} (A.15Db)
Note that for a glven x(loo, x{ is determined by Ny(z.); i.e. if

Ni(xL.) =N, x{ =xZNT!. Thus there are no more than N, x{’s

such that N(x{oo) < N. In particular,

A, (x)] < 2179, (A.16)
Now for a given x% _,
Pr{4;B; | X% =22}
= Z P, (xli ‘ x(ioo)
xteA,(x2_)B,(x")
(a) (b)
< 24D)| < 27 (A.17)

where step (a) follows from x{ € By(x%.), and step (b) from
(A.16). Tneq. (A.17) implies that P(A}B}) < 27/2, so that from
Borel-Cantelli, P[A}; B} i.0.] = 0, and from (A.11) and Lemma A.1,
P[A} i.0.] = 0. This is Lemma A.3.

Historical Note: Lemma A.2 was established in [7].
Lemma A.3 was found first by Orenstein and Weiss [5]. The proof
given here of Lemma A.3 is new.

Xivo ~ P() — = Classifier ———= fc(X{VOaQZ)

Q(z), z € A’

Figure 1:

