
1994 Shannon LectureTypical Sequences and All That:Entropy, Pattern Matching, and Data CompressionAaron D. WynerAT&T Bell LaboratoriesMurray Hill, New Jersey 07974USA(adw@research.att.com)I. IntroductionThis will be a talk about how pattern matching relates tocertain problems in information theory. Here is a typicalpattern matching problem.A monkey sits at a typewriter and every secondtypes a single Latin letter. Assume that all 26letters are equally likely, and successive lettersare independent. How long on the average willit take the monkey to type \CLAUDESHAN-NON"?The answer is that the average waiting time (in seconds)is 2613 = 213 log2 26 = 2`H ;where` = 13 = number of letters in\CLAUDESHANNON"H = log 26 = entropy of the monkey's data sequence:(All logarithms are taken to the base two.) We will showthat entropy and pattern matching are closely connectedby looking at three problems:A. Observe the output of a data source, X1;X2;X3; : : :,and estimate the entropy of the source.B. Encode a data source fXkg into binary symbols us-ing about H bits/source symbol (optimal losslessdata-compression).C. Observe N0 symbols from an unknown data sourcefXkg, and decide whether or not the source statis-tics are the same as those of a given known source(classi�cation).

In the next section we will give some preliminary de�-nitions and facts, and then discuss these problems in thefollowing three sections.II. PreliminariesWe need a bit of notation. An information or data sourceis a random sequence fXkg, �1 < k < 1. We assumethat the sequence is stationary and ergodic, and Xk takesvalues in the �nite set A, with cardinality jAj = A. Theprobability law de�ning the data source is given byPK �xK1 � , PrnXK1 = xK1 o ; K = 1; 2; : : : ; (2.1)where we use the notation xji = (xi; xi+1; : : : ; xj),i < j. When sub- and super-scripts are obvious fromthe context, they will be omitted.The entropy of the data source isH , limK!1Xx 1KPK �xK1 � log 1PK �xK1 �= limK!1 1KE log 1PK �XK1 � : (2.2)The indicated limit always exists. It is easy to showthat H � logA, with equality i� the fXkg are i.i.d. andequally probable.The theorem (due to Shannon and McMillan) that liesat the heart of much of information theory is the \Asymp-totic Equipartition Property" or \AEP". We state it asfollows. For � > 0, and ` = 1; 2; : : : ; let the setT (`; �) = �x 2 A` : ���� 1̀ log 1P`(x) �H���� � �� : (2.3)1



Thus if x 2 T (`; �), P`(x) = 2�`(H��). The AEP is atheorem which states that with � > 0 held �xed, as `becomes large, the probability of T (`; �) approaches 1.That is,Theorem 2.1 (AEP) For �xed � > 0,lim`!1 Pr (T (`; �)) = 1:Since with probability close to 1, the random vector X1̀ 2T (`; �) (` large), the set T (`; �) is called the \typical set".A proof of the AEP can be found in many textbooks andelsewhere. See for example [3]. An important propertyof T (`; �) is that it is not too large:Proposition 2.2. jT (`; �)j � 2`(H+�).Proof:1 � Pr (T (`; �)) = Xx2T P`(x) � 2�`(H+�)jT (`; �)j:The second inequality follows from the de�nition ofT (`; �) (2.3).Let us remark that there is a stronger version of theAEP called the Shannon-McMillan-Breiman Theorem.(See for example [1].) We state this asTheorem 2.10. For a stationary, ergodic source, withprobability 1, as `!1,1̀ log 1P`(X1̀) ! H:We next turn to pattern matching and give some de�-nitions and theorems that we will need later.De�nition 2.3. For x = x1�1, and ` = 1; 2; : : :, de�neN`(x) as the smallest integer N � 1 such that x1̀ =x�N+`�N+1.N`(x) is a (backward) \recurrence time" for x1̀. As anexample suppose that fxkg is as followsk : �5 �4 �3 �2 �1 0 1 2 3 4 5xk : a b b c a b b b c a cLet ` = 4, and think of x1̀ = x41 as a template. Slidethe template to the left until we see a perfect match. Inthe example, x1̀ = (b b c a), and we get the �rst perfectmatch 5 places to left (since x41 = x�1�4). Thus N4(x) = 5.Note also that N1 = N2 = 1, N3 = 5 and N5 > 6.We now state a theorem aboutN`(x), which is a specialcase of a theorem of Kac [4]. A proof is given in theAppendix.

Theorem 2.4 (Kac) For all z 2 A`,E �N`(X) j X1̀ = z� = 1=P`(z): (2.4)A plausibility argument for Theorem 2.4 goes as fol-lows. Fix z. De�ne the random variablesWi = ( 1; if X�i+`�1�i = z0; otherwise:Of course, EWi = P`(z). Then it is reasonable to write( Average (backward) recurrencetime for z )= ( Average time betweenoccurrences of z )= limK!1 K( no. of occurrencesof z in X`�1�K+1 ) = limK!1 KK�1Xi=0 Wi(a)�! 1EWi = 1P`(z) :Step (a) follows from the ergodic theorem. The plausibil-ity argument is completed by observing that reasonablyfAverage recurrence time for zg = E �N` j X1̀ = z�.Using Theorem 2.4 and the AEP (which tells us thatthe right-member of (2.4) is about 2`H) we can obtainTheorem 2.5 (Wyner and Ziv) As `!11̀ log(N`(X)! H (in probability)Actually the convergence is with probability 1, and aproof of this stronger form is contained in the Appendix.We next de�ne another quantity which is closely re-lated to N(x).De�nition 2.6. For x = x1�1, and n = 1; 2; : : :, de�neLn(x) as the largest integer L � 1 such that a copy of xL1begins in [�n+ 1; 0]. (Think of X0�n+1 as a \window".)As an example, suppose that fxkg is as before:k : �5 �4 �3 �2 �1 0 1 2 3 4 5xk : a b b c a b b b c a cLet n = 5. Then (b b c a) = x41 is the longest string start-ing at position 1, a copy of which begins in the windowx0�4 = (b b c a b). (Note that a copy of x51 = (b b c a c)does not begin in x0�4.) Thus L5(x) = 4.2



N` and Ln are in a sense dual quantities since theeventsfN`(X) > ng = ( a copy of X1̀ does notbegin in [�n+ 1; 0] )= fLn(X) < `g : (2.5)Thus Theorem 2.5 implies that Ln(X) ! lognH (in prob-ability). Collecting the above results, we haveTheorem 2.7. (a) As `!1,1̀ logN`(X)! H (in probability);(b) As n!1,Ln(X)! lognH (in probability):III. Entropy Estimation (Problem A)We �rst show how the pattern matching ideas in Sec-tion II can be used to obtain an e�cient \sliding window"entropy estimation technique (Problem A in Section I).Observe fX1;X2; : : :g. Initially, let Xn1 de�ne a \win-dow", and let L(1) be the largest integer L such thatXn+Ln+1 = Xm+L�1m ; for some m 2 [1; n]:Thus L(1) is the length of the longest string starting atXn+1 a copy of which begins in the window Xn1 . Ofcourse, L(1) has the same statistics as Ln (Def. 2.6).Next shift the window 1 position, so that the new win-dow is Xn+12 , and de�ne L(2) in the same way. Repeatthis process to get L(k), k = 1; 2; 3; : : : .Now if the source has �nite memory, it can be shown[9, 10] that, as n!1,ELn � log nH (3.1)(Note that Eq. (3.1) is close to, but not the same as The-orem 2.7(b).). Thus, it follows from the ergodic theoremthat 1K KXk=1L(k) ! E Ln � lognH ; (3.2)and a good estimate for the entropy isbH , K log nKXk=1L(k) (3.3)

for some large K. Even if the source does not satisfy(3.1), Theorem 2.7(b) can be used to obtain an estimateof bH from the nL(k)o.The technique was used very e�ectively in [2],where the entropy of the information bearing and non-information bearing parts (\exons" and \introns", re-spectively) were estimated and compared.IV. Data-Compression (Problem B)The AEP immediately suggests a data-compressionscheme. Theorem 2.1 and Proposition 2.2 together im-ply that, when ` is large, the set T (`; �) has no more than2`(H+�) members and has probability nearly 1. Thus, as-suming that the source statistics are known, the systemdesigner can index the members of T (`; �), using no morethan `(H + �) bits.The scheme is as follows. If X1̀ 2 T (`; �), then encodeX1̀ as its index in T (`; �). This requires� � `(H + �)bits. If X1̀ does not belong to T (`; �), then encode X1̀uncompressed. This requires � ` logA bits. Including a1-bit 
ag to distinguish the two modes, we have describeda (\�xed-to-variable-length") lossless code with rateE 1̀ nno. of bits to encode X1̀o� P (T (`; �)) `(H + �)` + P (T c(`; �)) ` logA`+1̀ ! H + �; as `!1:Thus the source is encoded into binary symbols usingabout H bits/source symbol, and this rate is known tobe optimal. But what can be done if the source statisticsare unknown to the system designer?The Lempel-Ziv data-compression algorithms providea universal compression technique for coding a datasource into binary using about H bits/source sym-bol without knowledge of the source statistics. Theirtechnique is intimately connected to pattern match-ing. We'll describe the \sliding-window Lempel-Ziv al-gorithm" (also called \LZ '77").Here is how the algorithm works. Let n be an integerparameter. Assume that the n-string X0�n+1 is avail-able to both the encoder and decoder | say by encodingX0�n+1 with no compression. We will encode X1;X2; : : : ;so that the cost of encoding X0�n+1 is \overhead" whichcan be amortized over an essentially in�nite time, andthis cost doesn't contribute to the rate. Think of X0�n+1as our �rst \window".�We ignore integer constraints.3



We now begin the encoding process. Let Ln be as inSection II, the largest integer L � 1, such thatXL1 = Xm+L�1m ; m 2 [�n+ 1; 0]:The quantity m is called the \o�set" corresponding tothe \phrase" XLn1 . This �rst phrase is encoded by(a) a binary representation of Ln. This requires aboutlogLn +O(log log n) (for large n, see [8]).(b) a binary representation of the o�setm. This requireslogn bits.If Ln = 0 (i.e. X1 6= X�m, m 2 [�n+ 1; 0]) we let the�rst phrase be X1, and encode it uncompressed. Alsoif a phrase is so short that number of bits to encode it((a)+(b) above) exceeds LndlogAe, we encode the phraseuncompressed. We also need a 
ag bit to distinguishthese two modes. Note that from Theorem 2.7(b), Ln �log nH with high probability, so that the latter mode is veryunlikely.With the encoding done, the window is now shifted Lnpositions to become XLn�n+1+Ln , and the encoding pro-cedure is repeated to form and encode a second phrasebeginning with XLn+1 using this new window. The pro-cess is continued inde�nitely.Now let's look at the decoding procedure. The decoderknows the �rst window, X0�n+1, the o�set m, and thelength of the �rst phrase Ln. It can reconstruct this �rstphrase by starting at Xm (in the window) and movingahead Ln positions. For example, if n = 5 and(X�4; X�3; � � �) = (a b c d e ... d e d a � � �);then Ln = 3 and m = �1. (This is because X31 = X1�1).With knowledge of the window, X0�4 = (a b c d e), thedecoder copies \d" and \e" to positions 1 and 2, respec-tively, and then copies the \d" in position 1 to position 3:Thus the decoder can recover the �rst phrase X31. Suc-cessive phrases are decoded in the same way.We can now give an estimate of the rate of this algo-rithm. Since, with high probability, the phrase lengthwill be long enough to use the �rst encoding mode,code rate � no. of bits to encode phraselength of a phrase� logn+ logLn +O(log logLn)Ln :Since, from Theorem 2.7(b), Ln � log nH , with high prob-ability when n is large, the code rate is about H.

The above analysis is not at all precise. For a carefuldiscussion of the Sliding-Window Lempel-Ziv algorithm,the reader is referred to [8]. In particular the followingis proved there.Theorem 4.1. When the sliding-window Lempel-Ziv al-gorithm is applied to a stationary ergodic source, for all� > 0, there exists a window size n (su�ciently large)such thatlim supK!1 1K E ( no. of bits toencode XK1 ) � H + �: (4.1)An interesting question is how large does the windowsize n have to be so that (4.1) will hold for a given � > 0?The answer of course is that it depends on the sourcestatistics. Thus, although the speci�cation of the algo-rithm does not depend of the source statistics explicitly,the choice of the proper window size does. In practice, awindow size is chosen, and the algorithm is used on a va-riety of sources | for some sources the compression rateis close to the entropy, for others it may not be. It seemsobvious that any so-called \universal algorithm" with agiven memory size cannot perform well for all sources.Concerning the main thrust of this talk, we observethat the window in the Lempel-Ziv algorithm plays therole of the typical set T (`; �) in the classical compressionscheme.Some historical comments: The sliding-window LZ al-gorithm (LZ '77) was published in 1977 by A. Lempeland J. Ziv [11]. They published another less powerfulbut easier to implement version in 1978 [12]. In 1977they established the optimality of LZ '77 in a combina-torial, non-probabilistic sense. True optimality was es-tablished for LZ '78 in [12]. (Also see [1, Section 12.10].)Finally, optimality of LZ '77 (Theorem 4.1) was estab-lished by Wyner and Ziv in [8]. Sliding-window LZ isthe basis for the UNIX \gzip", and for the \Stacker" and\Doublespace" programs for personal computers.V. Classi�cation (Problem C)Here is the sort of problem that we will address in thissection.We are allowed to observe N0 characters fromthe corpus of work of a newly discovered 16thcentury author. We want to determine if thisunknown author is Shakespeare. And we wantto do it with minimum N0.4



A mathematical version of the problem is depicted in Fig-ure 1. This classi�er observes N0 symbols from a station-ary data source XN01 (\newly discovered author") withprobability law P (�) and alphabet A. It also knows asecond distribution on `-vectors, Q`(z), z 2 A` (\Shake-speare"). Its task is to decide whether or not P`(z)(z 2 A`), the `-th order marginal distribution corre-sponding to P (�), is the same as Q`. Speci�cally, theclassi�er must produce a function fc �XN01 ; Q`� which,with high probability, equals 0 when P` � Q`, and 1when the Kullback-Liebler divergence D`(Q`;P`) � �,where D`(Q`;P`) , 1̀ Xz2A`Q`(z) log Q`(z)P`(z) ; (5.1)and � is a �xed parameter. Recall that D`(Q`; P`) � 0,with equality i� Q` � P`, and is a measure of \di�erent-ness". If 0 < D`(Q`; P`) < �, then nothing is expectedof the classi�er. The problem is to design a classi�er asabove with minimum possible N0.In [6], it is shown that for a �nite-memory (Markov)source, when ` is large, the minimum N0 is about2`H+o(`), where H is the source entropy. The intuitionfor this is the following. The classi�er knows Q(z),z 2 A`, and therefore it knows the corresponding typ-ical set T (`; �). It turns out that for N0 � 2`(H+�), thesequence XN01 will (with ` large and with high proba-bility) contain the typical set corresponding the P`(�) assubsequences. If these sets agree substantially, then theclassi�er declares that Q` � P`. Otherwise, it declaresD`(Q`;P`) > �.More precisely, for z 2 A` and x 2 AN0 , let bN(z;x)be the smallest integer N 2 [1; N � ` + 1] such that acopy of z is a substring of x, i.e. z = xN+`�1N . If z is nota substring of x, then take bN(z;x) = N0 + 1. Now thefollowing can be shown to hold: For �xed z, when ` islarge and N0 = 2(H+�)`,(a) Prn bN �z; XN01 � � N0o � 1(b) Pr� 1̀ ����log bN �z;XN01 �� log 1P`(z) ���� < �� � 1:(5.2)Based on (5.2), the classi�er might work as follows. Foreach z 2 A` it computes bN �z;XN01 �, and letsbP`(z) = 1= bN �z;XN01 � (5.3)

be an estimate of P`(z). It then plugs this estimate intothe equation for D`, to obtainbD`(Q`; P`) , Xz2A`Q`(z) log Q`(z)bP`(z) : (5.4)Finally, it then sets fc �XN1 ; Q� = 1 or 0 according as bDexceeds a threshold.It turns out that this technique works, but with thefollowing modi�cation. Break the sequence XN01 into Ksubsequences, where K is a constant that doesn't growwith `. Then if N0 � 2H`, the length of each of the Ksubstrings, N0=K, has the same exponent as N0. Thenreplace (5.3) bybP`(z) = 1max1�k�K bN �z;XkN0=K(k�1)N0=K+1� ; (5:30)and use (5.4) to compute the estimate bD. Complete de-tails are given in [6].Thus we see again how the typical set T (`; �) is roughlythe same as the collection of substrings of length ` of(X1;X2; : : : ;XN0) where N0 � 2`(H+�).AcknowledgementI would like to express my thanks to the InformationTheory Society for selecting me to present this ShannonLecture. Receiving an award from the group that hasbeen my intellectual home for over 30 years is especiallygratifying. I owe a great deal to countless other workersin information theory, but I would like to make specialmention of several to whom I am especially indebted.David Slepian hired me into Bell Labs, and put meon my feet as a researcher. I also would like to publiclythank the following friends and colleagues, from whosehelp I bene�ted enormously: Jim Mazo, Larry Ozarow,Larry Shepp, Hans Witsenhausen, and Jack Wolf. Fi-nally, to my long-time friend and collaborator Jacob Ziv,I extend an especially warm and grateful thank you.Without the help of these people, and many others in theinformation theory community and at Bell Labs, there isno doubt that I would not be presenting this lecture.References[1] Cover, T. and J. Thomas, Elements of InformationTheory, Wiley, New York, 1991.5



[2] Farach, M., M. Noordeweir, S. Savari, L. Shepp,A.J. Wyner, J. Ziv, \On the Entropy of DNA: Al-gorithms and Measurements based on Memory andRapid Convergence", Proceedings of the 1995 Sym-posium on Discrete Algorithms.[3] Gallager, R.G., Information Theory and ReliableCommunication, Wiley, New York, 1968 (Theorem3.5.3).[4] Kac, M., \On the notion of Recurrence in DiscreteStochastic Processes", Bull. of the Amer. Math.Soc., Vol. 53, 1947, pp. 1002-10010.[5] Orenstein, D.S. and B. Weiss, \Entropy and DataCompression Schemes", IEEE Transactions on In-formation Theory, Vol. 39, Jan. 1993, pp. 78-83.[6] Wyner, Aaron D. and Jacob Ziv, \Classi�cationwith Finite Memory", to appear in the IEEE Trans-actions on Information Theory.[7] Wyner, Aaron D. and Jacob Ziv, \Some AsymptoticProperties of the Entropy of a Stationary ErgodicData Source with Applications to Data Compres-sion", IEEE Transactions on Information Theory,Vol. 35, Nov. 1989, pp 1250-1258.[8] Wyner, Aaron D. and Jacob Ziv, \The Sliding-Window Lempel-Ziv Algorithm is AsymptoticallyOptimal", Proceedings of the IEEE, Vol. 82, June1994, pp. 872-877.[9] Wyner, Abraham J., \The Redundancy and Distri-bution of the Phrase Lengths of the Fixed-DatabaseLempel-Ziv Algorithm", submitted to the IEEETransactions on Information Theory.[10] Wyner, Abraham, J. \String Matching Theoremsand Applications to Data Compression and Statis-tics", Ph.D. Thesis, Statistics Dept., Stanford Uni-versity, June, 1993.[11] Ziv, J. and A. Lempel, \A Universal Algorithm forSequential Data Compression", IEEE Transactionson Information Theory, Vol. 23, May 1977, pp. 337-343.[12] Ziv, J. and A. Lempel, \Compression of IndividualSequences by Variable Rate Coding", IEEE Trans-actions on Information Theory, Vol. 24, Sept. 1978,pp. 530-536.

AppendixIn this appendix we will give precise proofs of Theorem 2.4 andTheorem 2.5. We begin withProof of Theorem 2.4: For a given z 2 A`, de�ne the binaryrandom sequence fYig1�1 byYi , � 1; if Xi+`i+1 = z0; otherwise: (A.1)Then Pr�N(X) = k j Xì = z	= Pr fY�k = 1; Y�j = 0 for 1 � j < k j Y0 = 1g, Q(k): (A.2)Write1 (a)= 1Xk=1 1Xi=0 Pr fY�k = 1; Yj = 0 for� k < j < i; Yi = 1g= 1Xk=1 1Xi=0 Pr fYi = 1gPr fY�k = 1; Yj = 0 for� k < j < i j Yi=1g(b)= Pr fY0 = 1g 1Xk=1 1Xi=0 Q(i+ j)(c)= Pr fY0 = 1g 1Xk=1 kQ(k)(d)= Pr�X1̀ = z	E �N(X) j X1̀ = z� : (A.3)Step (a) follows from the ergodicity of fXkg, which implies thatwith probability 1, Yn = 1 for at least one n < 0 and one n � 0.Step (b) follows from the stationarity of fXkg. Step (c) followsfrom the fact that Q(k) appears in the left member of (c) exactly ktimes | for (i; j) = (0; k); (1; k� 1); : : : ; (k� 1; 1). Step (d) followsfrom (A.1) and (A.2). Eq. (A.3) is Theorem 2.5.Before proving Theorem 2.7, we will give several lemmas. LetfE`g1̀=1 be a sequence of events in a probability space. De�ne theevents [E` i.o.] , 1\k=1 [n�k En; (A.4a)and [E` a.a.] , 1[k=1 \n�k En: (A.4b)[E` i.o.] is the event that E` occurs in�nitely often, and [E` a.a.] isthe event that all but a �nite number of the fE`g occur. (\a.a."stands for \almost always".) The following is easy to prove.Lemma A.1. Let fC`g and fE`g be sequences of events. IfP [E` a.a.] = 1 then P [C` i.o.] � P [C`E` i.o.].Next we observe that the strong form of the AEP (Theorem 2.10)states that with probability 1,1̀ log P` �X1̀�! H; as `!1: (A.5)6



Further a conditional form of the AEP states that with probability1, as `!1, �1` log P` �X1̀ j X0�1�! H: (A.6)(A.6) follows from the ergodic theorem on writing�1` log P` �X1̀ j X0�1� = �1` X̀i=1 log P �Xi j X0�1�`!1�! E � log P �Xi j X0�1� = H: (a.s.) (A.7)For � > 0, and ` = 1; 2; : : : ; letB` = �x1̀ : ���� 1̀ log 1P (X1̀) �H���� � �=2� (A.8)be the typical set de�ned in (2.3). >From Proposition 2.2jB`j � 2`(H+�=2): (A.9)Also de�ne a conditional version of B`, for � > 0, ` = 1; 2; : : : ;B 0̀ , �x�̀1 : ���� 1̀ log 1P`(X1̀ j X0�1) �H���� � �=2� : (A.10)Note that (A.6) and (A.7) imply thatP [B` a.a.] = P [B 0̀ a.a.] = 1: (A.11)We are now ready to begin the proof of Theorem 2.5. De�ne theevents, for � > 0, ` = 1; 2; : : : ;A` , n 1̀ logN`(X) � H + �o ; (A.12a)A0̀ , n 1̀ logN`(X) � H � �o : (A.12b)Theorem 2.5 follows from the following lemmas.Lemma A.2. P [A` i.o.] = 0.Lemma A.3. P [A0̀ i.o.] = 0.These lemmas imply that with probability 1,1̀ logN`(X)! H; as `!1; (A.13)which is the stronger form of Theorem 2.5.Proof of Lemma A.2: WriteP (A`B`) = Xz2B` P`(z)Pr�A` j X1̀ = z	= Xz2B` P`(z) Pr�N`(X) � 2`(H+�) j X1̀ = z	(a)� Xz2B` P`(z)E �N`(X) j X1̀ = z� 2�`(H+�)(b)= Xz2B` 2�`(H+�) = 2�`(H+�)jB`j (c)� 2�`�=2: (A.14)Step (a) follows from the Markov inequalityy step (b) from Theo-rem 2.4, and step (c) from (A.9). >From (A.12)P` P (A`B`) <1,so that the Borel-Cantelli Lemma implies P [A`B` i.o.] = 0. Thus(A.11) and Lemma A.1 (with C` = A`, E` = B`) imply Lemma A.2.yPrfjU j � ag � EjU j=a, for a � 0.

Proof of Lemma A.3: First observe that N`(x)is a functionof x�̀1, so that from now we write N` = N`(x�̀1). We conditionon X0�1 = x0�1. De�ne the section of A0̀ .A0̀ (x0�1) = �x1̀ : x�̀1 2 A0̀	 ; (A.15a)and B 0̀(x0�1) = �x1̀ : x�̀1 2 B 0̀	 : (A.15b)Note that for a given x0�1, x1̀ is determined by N`(x�̀1); i.e. ifN`(x�̀1) = N , x1̀ = x�N+`�N+1. Thus there are no more than N , x1̀'ssuch that N(x�̀1) � N . In particular,jA0̀ (x0�1)j � 2`(H��): (A.16)Now for a given x0�1,Pr�A0̀B 0̀ j X0�1 = x0�1	= Xx1̀2A0̀ (x0�1)B0̀ (x0�1)P` �x1̀ j x0�1�(a)� 2�`(H��=2) ��A0̀ (x0�1)�� (b)� 2�`�=2; (A.17)where step (a) follows from x1̀ 2 B`(x0�1), and step (b) from(A.16). Ineq. (A.17) implies that P (A0̀B 0̀) � 2�`�=2, so that fromBorel-Cantelli, P [A0̀B 0̀ i.o.] = 0, and from (A.11) and Lemma A.1,P [A0̀ i.o.] = 0. This is Lemma A.3.Historical Note: Lemma A.2 was established in [7].Lemma A.3 was found �rst by Orenstein and Weiss [5]. The proofgiven here of Lemma A.3 is new.
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de 10�1 2 a4d3edak: �2c�3b�4Xk:

fc(XN01 ; Q`)Q`(z); z 2 A`Classi�erXN01 � P (�)
Figure 1:
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