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Abstract

This article the first stone of a mean field game approach to market
microstructure. The goal of this first draft is to exhibit a way to model
LOBs with a continuous setting on which one can build behaviors of ratio-
nal agents. The model presented must be seen as a microstructure-level
model of noise traders. An important caveat that will be solved in the
future is the absence of bid/ask spread.

Introduction and notations

We will consider a diffusion model for the orders on each side of the market. The
density of orders will be denoted mA(t, p) and mB(t, p), the indices meaning Ask
and Bid respectively. Hence, the number of (unitary) buying orders between p
and p + dp is mB(t, p)dp.
Now, since we face a diffusion model, there is a flow of order going through
the price between t and t + dt. These (signed) flows are denoted jA(t, p)dt and
jB(t, p)dt depending on the side of the book (Bid or Ask).
Since we consider a continuous market, there must be an equilibrium at each
time t. Therefore, if one denotes p∗ the equilibrium price, we must have:

jB(t, p∗) = −jA(t, p∗) mB(t, p∗) = mA(t, p∗) = 0

Hence, if we consider that the diffusion parameter is σ, the classical relation
j(t, p) = − 1

2∂p(σ(t, p)m(t, p)) leads to ∂pmB(t, p∗) = ∂pmA(t, p∗), assuming a
regular function for σ. This is interesting since we are then able to consider the
regular function m defined by mB on the Bid side and defined by −mA on the
Ask side.

The model

We consider a diffusion model. Hence, if we consider the Bid side for instance,
the dynamics should be given (assuming σ is a constant) by a heat equation like
∂tm(t, p) − σ2

2 ∂2
ppm(t, p) = 0. However, two questions appear naturally : What

should we do with the executed order? What should we do with orders that go



outside the maximum range of price [P , P ]?
To answer these questions we have to make some hypotheses. First, we do not
want to loose mass. Hence executed orders should be reintroduced. If someone
buy a stock (bid side), it’s quite normal to introduce (perhaps far above the
current equilibrium price) a selling order (ask side). Our hypothesis is therefore
to reintroduce any bid order that is executed or goes out of the range on the
ask side and symmetrically. To reintroduce the orders, we use a distribution
function gA (resp. gB) whose mass is supported by the Ask side (resp. the Bid
side).
Hence the basic model is:

∂tmB(t, p) − σ2

2
∂2

ppmB(t, p) = gB(t, p)
(
−jA(t, p∗) + jA(t, P )

)
∂tmA(t, p) − σ2

2
∂2

ppmA(t, p) = gA(t, p) (jB(t, p∗) − jB(t, P ))

The problem to solve is therefore (with m(0, ·) given):

∂tm(t, p) − σ2

2
∂2

ppm(t, p) = gB(t, p)
(
−σ2

2
∂pm(t, p∗) +

σ2

2
∂pm(t, P )

)

+gA(t, p)
(
−σ2

2
∂pm(t, p∗) +

σ2

2
∂pm(t, P )

)
Some examples are below:

Figure 1: Symmetrical Beta Law for g
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Figure 2: Non-Symmetrical Beta Law for g

Figure 3: Upward shift due to a higher mass on the bid side
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Now, we are going to introduce randomness in this setting and obtain a
stochastic partial differential equation. The randomness is due to the fact that
more or less orders are added at a given price (idiosyncratic noise) or it can be
due to a global mass disequilibrium between the two sides.

To model this noise we generalize the preceding equation:

dm(t, p) =
[
σ2

2
∂2

ppm(t, p) = gB(t, p)
(
−σ2

2
∂pm(t, p∗) +

σ2

2
∂pm(t, P )

)

+gA(t, p)
(
−σ2

2
∂pm(t, p∗) +

σ2

2
∂pm(t, P )

)]
dt + νm(t, p)dW p

t + εm(t, p)dWt

This gives:

Figure 4: Case ν = 1
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Figure 5: Case ν = 5

Figure 6: Price move associated to the ν = 5 case
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Figure 7: Case ν = 1 and ε = 1

Figure 8: Price move associated to the case ν = 1 and ε = 1

6



We see that such an equation can easily lead to price movements that re-
semble real prices.

To end with the different possibilities, one can also consider a function for
σ instead of a constant and in that case the equations are a bit changed:

∂tm(t, p)−1
2
∂2

pp(σ
2(t, p)m(t, p)) = gB(t, p)

(
−1

2
∂p(σ2(t, p∗)m(t, p∗)) +

1
2
∂p(σ2(t, P )m(t, P ))

)

+gA(t, p)
(
−1

2
∂p(σ2(t, p∗)m(t, p∗)) +

1
2
∂p(σ2(t, P )m(t, P ))

)
An example is given below:

Figure 9: Case σ2 = exp(−(p − p∗)2)

Concluding remarks

Our model is rich enough to model noise traders and one can build a mean field
game upon this model. However, calibration is needed and one can see that the
calibration is not a real difficulty as soon as σ is a constant. In the equation,

dm(t, p) =
[
σ2

2
∂2

ppm(t, p) = gB(t, p)
(
−σ2

2
∂pm(t, p∗) +

σ2

2
∂pm(t, P )

)

+gA(t, p)
(
−σ2

2
∂pm(t, p∗) +

σ2

2
∂pm(t, P )

)]
dt + νm(t, p)dW p

t + εm(t, p)dWt
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the noise terms can be extracted easily since they are respectively idiosyn-
cratic and global noise. σ2, gA and gB can then be calibrated using the ex-
changed volume and the form of the LOBs.
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